ERRORS IN "COMPUTATIONAL LINEAR AND COMMUTATIVE ALGEBRA"

- pag. 64 Example 2.2.19

$$
A_{2}=\left(\begin{array}{rrrr}
0 & 2 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow A_{2}=\left(\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- line -3 This is an matrix \longrightarrow This is a matrix
- pag. 172 Algorithm 4.5.22
an algorithm checks \longrightarrow an algorithm which checks
(1) $B=\left(t_{1}, \ldots, t_{d}\right) \longrightarrow B=\left(b_{1}, \ldots, b_{d}\right)$
- pag. 177 Example 4.6 .5 is not a counterexample. Replace it with the following:

Example 4.6.5. Let $K=\mathbb{Q}$, let $P=K[x, y]$, let I be the vanishing ideal of the affine set of eight points given by $p_{1}=(1,-1), p_{2}=(0,2), p_{3}=(1,1), p_{4}=(1,2)$, $p_{5}=(0,1), p_{6}=(1,3), p_{7}=(2,4)$, and $p_{8}=(3,4)$, and let $R=P / I$. The reduced Gröbner basis of I with respect to DegRevLex is

$$
\begin{gathered}
x^{2} y-4 x^{2}-x y+4 x, \quad x^{3}+x y^{2}-6 x^{2}-3 x y-y^{2}+7 x+3 y-2, \\
y^{4}-10 x y^{2}-5 y^{3}+15 x^{2}+30 x y+15 y^{2}-35 x-25 y+14, \\
x y^{3}-7 x y^{2}-y^{3}+14 x y+7 y^{2}-8 x-14 y+8
\end{gathered}
$$

Since this term ordering is degree compatible, the residue classes of the elements in the tuple $\left(1, y, x, y^{2}, x y, x^{2}, y^{3}, x y^{2}\right)$ form a degree-filtered K-basis of R with increasing order tuple $(0,1,1,2,2,2,3,3)$. On the other hand, the reduced Gröbner basis of I with respect to Lex is

$$
\begin{gathered}
x^{2}-\frac{2}{3} x y^{2}+2 x y-\frac{7}{3} x+\frac{1}{15} y^{4}-\frac{1}{3} y^{3}+y^{2}-\frac{5}{3} y+\frac{14}{15}, \\
x y^{3}-7 x y^{2}+14 x y-8 x-y^{3}+7 y^{2}-14 y+8, y^{5}-9 y^{4}+25 y^{3}-15 y^{2}-26 y+24
\end{gathered}
$$

So, the residue classes of the elements in the tuple $B=\left(1, y, x, y^{2}, x y, y^{3}, x y^{2}, y^{4}\right)$ form a K-basis of R. Notice that we have $\bar{y}^{4}=10 \bar{x} \bar{y}^{2}+5 \bar{y}^{3}-15 \bar{x}^{2}-30 \bar{x} \bar{y}-15 \bar{y}^{2}+$ $35 \bar{x}+25 \bar{y}-14$ in R, and therefore $\operatorname{ord}_{\overline{\mathcal{F}}}\left(\bar{y}^{4}\right)=3$. Altogether, we see that B is not a degree-filtered basis, since its increasing order tuple is $(0,1,1,2,2,3,3,3)$.

- pag. 180 Algorithm 4.6.13 items 4 and 5 have the wrong number
- pag. 183 Algorithm 4.6.21
(2) $C \in \operatorname{Mat}_{d}\left(K\left[y_{1}, \ldots, y_{\Delta}\right]\right) \longrightarrow C \in \operatorname{Mat}_{d}\left(K\left[z_{1}, \ldots, z_{\Delta}\right]\right)$
- pag. 183 Example 4.6.22 first line
$I=\langle x y-x, \ldots\rangle \longrightarrow\langle x y-y, \ldots\rangle$
- pag. 194 line -4

A pointed out \longrightarrow As pointed out

